Potential of Fabricated Light Foamed Concrete in Reducing Radon from Building Material

Article Preview

Abstract:

Three of Light Foamed Concrete (LFC) have been obtain by using different formula of Cement:Aggregates. The brick was locate into a closed Perspex box and the net of 222Rn concentration level have been measured for 5 consecutive days. The results show the LFC 3 has produced the lowest of net 222Rn concentration level in air, followed by LFC 2 and LFC 1, respectively. The result also show the 222Rn concentration level have been influenced by the temperature and relative humidity in air.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-431

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Holbrook, M. Radon: A Public Health Risk. Indiana State Nurses Association Bulletin, (2014).

Google Scholar

[2] S.A. Saidi, M.S. Jaafar, M.K.A.A. Razab, and N.N. Zulkepli, A Study of Radon-222 Levels in Foamed Light Concrete. Australian Journal of Basic and Applied Sciences, 7 (2013) 315-318.

Google Scholar

[3] S.A. Saidi, Faktor Emanasi Rn-222 Daripada Bahan Konkrit Ringan Berbusa Dalam Ruang Prototaip. Unpublished Ph. D Thesis, Universiti Sains Malaysia, Penang, (2014).

Google Scholar

[4] J.J. Bevelacqua. Contemporary health physics: problems and solutions: John Wiley & Sons (2009).

Google Scholar

[5] J.E. Martin, Radiation Shielding Physics for Radiation Protection: A Handbook, Second Edition, John Wiley & Sons, (2008).

Google Scholar

[6] S. Darby, D. Hill, A. Auvinen, J. Barros-Dios, H. Baysson, F. Bochicchio, H. Deo, R. Falk, F. Forastiere and M. Hakama, Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Bmj. 330 (2005).

DOI: 10.1136/bmj.38308.477650.63

Google Scholar

[7] B. Almayahi, R.O. Hussein, H.H. Hussain, A.K. Alsaedi, A. Alasadi, & A.S. Ali, Bricks Rn-222 Exhalation Rates in Some Samples from Different Countries, World Appl. Sci. J. 29(6) (2014) 706-709.

DOI: 10.14445/22315381/ijett-v7p255

Google Scholar

[8] A. Abdallah, M. Mohery, S.J. Yaghmour, & S. Alddin, Radon exhalation and natural radiation exposure in low ventilated rooms, Radia. Phys. Chem. 81(11) (2012) 1710-1714.

DOI: 10.1016/j.radphyschem.2012.07.004

Google Scholar

[9] B. Sahoo, B. Sapra, J. Gaware, S. Kanse, & Y. Mayya, A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples, Sci. Total Environ. 409(13) (2011) 2635-2641.

DOI: 10.1016/j.scitotenv.2011.03.031

Google Scholar

[10] A. Kumar, R. Chauhan, M. Joshi, & B. Sahoo, Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements, J. Environ. Radioact. 127 ( 2014) 50-55.

DOI: 10.1016/j.jenvrad.2013.10.004

Google Scholar

[11] R. W. Field, D.J. Steck, C.F. Lynch, C.P. Brus, J.S. Neuberger and B.C. Kross, . Residential radon-222 exposure and lung cancer: exposure assessment methodology. Journal of Exposure Analysis and Environmental Epidemiology, 6 (1996)181-195.

DOI: 10.1093/oxfordjournals.aje.a010153

Google Scholar

[12] T. Godish, (2010). Indoor environmental quality: CRC Press LLC. Florida, USA.

Google Scholar

[13] W.H. Organization, WHO handbook on indoor radon: a public health perspective, World Health Organization, (2009).

Google Scholar

[14] C. Man, & H. Yeung, Radioactivity contents in building materials used in Hong Kong, J. Radioanal. Nucl. Chem. 232(1-2) (1998) 219-222.

DOI: 10.1007/bf02383742

Google Scholar

[15] G. Keller, B. Hoffmann, & T. Feigenspan, Radon permeability and radon exhalation of building materials, Sci. Total Environ. 272 (2001) 85-89.

DOI: 10.1016/s0048-9697(01)00669-6

Google Scholar

[16] P. Bossew, The radon emanation power of building materials, soils and rocks, Appl. Radiat. Isot. 59 (2003) 389-392.

DOI: 10.1016/j.apradiso.2003.07.001

Google Scholar

[17] C. Cosma, A. Cucoş-Dinu, B. Papp, R. Begy, C. Sainz, Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania), J. Environ. Radioact. 116 (2013) 174-179.

DOI: 10.1016/j.jenvrad.2012.09.006

Google Scholar

[18] A. Sakoda,Y. Nishiyama, K. Hanamoto, Y. Ishimori, Y. Yamamoto, T. Kataoka, A. Kawabe, K. Yamaoka, Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soi, Appl. Radiat. Isot. 68 (2010).

DOI: 10.1016/j.apradiso.2010.04.025

Google Scholar

[19] J. W. Washington, and A.W. Rose, Regional and temporal relations of radon in soil gas to soil temperature and moisture, Geophys. Res. Lett. 17 (1990) 829-832.

DOI: 10.1029/gl017i006p00829

Google Scholar